Course notes

ANALYSIS OF BENT SECTIONS IN SERVICEABILITY LIMIT STATE

Dr.ing. NAGY-GYÖRGY Tamás *Professor*

E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

Web:

http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office: A219

ANALYSIS OF BENT SECTIONS IN SERVICEABILITY LIMIT STATE

Stress analysis in SLS is necessary for:

- stress limitation
- crack control
- deflection control

1. CRACKING BENDING MOMENT

2. STRESSES IN CRACKED SECTION

3. STRESSES LIMITATION

1. Cracking bending moment / Momentul încovoietor de fisurare

CRACKING BENDING MOMENT

Calculation of cracking bending moment in current sections is based on the hypothesis of **elastic behaviour of concrete**, not considering the plastic deformations of tensioned concrete just before cracking

 \rightarrow influence of reinforcement on the position of neutral axis can be neglected as well as its contribution to the value of the cracking bending moment

In conformity to Navier relation:

$$M_{cr} = f_{ctm} W_1$$

(Prof. Clipii)

1. CRACKING BENDING MOMENT

2. STRESSES IN CRACKED SECTION

3. STRESSES LIMITATION

STRESSES IN SERVICE STAGE (CRACKED)

SERVICE STAGE \leftrightarrow 2nd Stage \leftrightarrow cross section is cracked

When determining stresses in concrete and reinforcement the assumptions considered are:

- Plane sections before deformation remain plane after deformation;
- Elastic behaviour for both reinforcement and compressed concrete (Hook's law);
- Neglecting tensioned concrete contribution between cracks;
- the strain in bonded reinforcement, whether in tension or in compression, is the same as that in the surrounding concrete;.

Universitatea Politebnica Timisoara

At the level of reinforcement, concrete and reinforcement have the same strain:

$$\varepsilon_s = \varepsilon_c \qquad \rightarrow \qquad \sigma_s / E_s = \sigma_c / E_c \qquad \rightarrow \qquad \sigma_s = \sigma_c (E_s / E_c)$$

 $\alpha_e = E_s/E_c$ coefficient of equivalence

$$\rightarrow F_s = A_s \sigma_s = A_s (\alpha_e \sigma_c) = (\alpha_e A_s) \sigma_c = A_{c,eq} \sigma_c$$

 $A_{c,eq} = \alpha_e A_s$ \rightarrow allows replacement of reinforcement area with an equivalent concrete

 \rightarrow to compute stresses in service stage (stage II), the nonhomogeneous reinforced concrete section is replaced by a homogeneous section of concrete

In servicebility limit stage for stress control, for crack control and deflection control the effect of creep must be considered

$$E_{c,eff} = \frac{E_{cm}}{1 + \varphi(\infty, t_0)}$$

Position of neutral axis can be obtained from the equation of first moment of area about neutral axis:

$$S_c = S_t$$

 $S_c = S_{cc} - A_{s2}(x - d_2) + \alpha_e A_{s2}(x - d_2)$ first moment of compressed zone

$$S_{cc} = \int_0^x y b_y \, d_y$$

 $S_t = \alpha_e A_{s1}(d - x)$

first moment of compressed concrete area A_c about neutral axis first moment of tension area

(Prof. Clipii)

Compressed zone height x resulting from a 2nd order equation:

$$S_{cc} + (\alpha_e - 1)A_{s2}(x - d_2) - \alpha_e A_{s1}(d - x) = 0$$

Stress in **compressed concrete**

reinforcements

Navier's formula applied for cracked RC section in bending

 $\sigma_c = \frac{M}{I_{II}}x$

$$\sigma_{s1} = \alpha_e \sigma_{c,s1} = \alpha_e \frac{M}{I_{II}} (d-x)$$

$$\sigma_{s2} = \alpha_e \sigma_{c,s2} = \alpha_e \frac{M}{I_{II}} (x - d_2)$$

In service stage (stage II) inertia of homogeneous cracked area about neutral axis:

and

$$I_{II} = I_{cc} + (\alpha_e - 1)A_{s2}(x - d_2)^2 + \alpha_e A_{s1}(d - x)^2$$

where

$$I_{cc} = \frac{bx^3}{3} - (b - b_w) \frac{(x - h_f)^3}{3}$$
 inertia of compressed concrete area about neutral axis

Inertia of reinforcement area about own axis is negligible. (Prof. Clipii)

Faculty of Civil Engineering

Politebnica 10 Timisoara

Dr.ing. Nagy-György T. ©

Х

2. Stresses in cracked section / Eforturilor unitare în stadiul de serviciu

For rectangular cross sections and

T cross sections

$$S_{cc} = 0.5bx^{2} - 0.5(b - b_{w})(x - h_{f})^{2}$$
$$I_{cc} = bx^{3}/3 + (b - b_{w})(x - h_{f})^{3}/3$$

(Prof. Clipii) Universitatea Politebnica Timișoara

11

1. CRACKING BENDING MOMENT

2. STRESSES IN CRACKED SECTION

3. STRESSES LIMITATION

3. Stresses limitation / Limitarea eforturilor unitare

Compression stresses in concrete shall be limited to avoid longitudinal cracks or non-linear deformations from creep

1) Under characteristic combinations of loads $(G + Q_{k,1} + \psi_{0,i}Q_{k,i})$ for elements exposed to environment of exposure classes XD & XS (chloride attack) and XF (freeze-thaw attack) compression stress is limited to:

$$\sigma_c \leq 0$$
,6 f_{ck}

 Ψ_0 - ULS, irreversible SLS Ψ_1 - ULS with A and reversible SLS Ψ_2 - ULS with A, reversible SLS, long term effects

Action	Ψ	ψ_1	ψ_2	
Imposed loads in buildings, category (see				
EN 1991-1-1)				
Category A : domestic, residential areas	0,7	0,5	0,3	
Category B : office areas	0,7	0,5	0,3	
Category C : congregation areas	0,7	0,7	0,6	
Category D : shopping areas	0,7	0,7	0,6	
Category E : storage areas	1,0	0,9	0,8	
Category F : traffic area,				
vehicle weight ≤ 30 kN	0,7	0,7	0,6	
Category G : traffic area,				
30kN < vehicle weight ≤ 160kN	0,7	0,5	0,3	
Category H : roofs	0	0	0	
Snow loads on buildings (see EN 1991-1-3)*				
Finland, Iceland, Norway, Sweden	0,70	0,50	0,20	
Remainder of CEN Member States, for sites	0,70	0,50	0,20	
located at altitude H > 1000 m a.s.l.				
Remainder of CEN Member States, for sites	0,50	0,20	0	
located at altitude H ≤ 1000 m a.s.l.				
Wind loads on buildings (see EN 1991-1-4)	0,6	0,2	0	
Temperature (non-fire) in buildings (see EN	0,6	0,5	0	
1991-1-5)				
NOTE The ψ values may be set by the National annex.				
* For countries not mentioned below, see relevant local conditions.				

EN 1990:2002 & CR0-2012

Politebnica 13

3. Stresses limitation / Limitarea eforturilor unitare

Compression stresses in concrete shall be limited to avoid longitudinal cracks or non-linear deformations from creep

2) Under **quasi-permanent load combination** $(G + \psi_2 Q_k)$ in order to allow the development of a linear creep, the limitation of the compressive stress is:

$$\sigma_c \leq 0,45 f_{ck}$$

 Ψ_0 - ULS, irreversible SLS Ψ_1 - ULS with A and reversible SLS Ψ_2 - ULS with A, reversible SLS, long term effects

Action	ψ_0	ψ_1	ψ_2	
Imposed loads in buildings, category (see				
EN 1991-1-1)				
Category A : domestic, residential areas	0,7	0,5	0,3	
Category B : office areas	0,7	0,5	0,3	
Category C : congregation areas	0,7	0,7	0,6	
Category D : shopping areas	0,7	0,7	0,6	
Category E : storage areas	1,0	0,9	0,8	
Category F : traffic area,				
vehicle weight ≤ 30 kN	0,7	0,7	0,6	
Category G : traffic area,				
30kN < vehicle weight ≤ 160kN	0,7	0,5	0,3	
Category H : roofs	0	0	0	
Snow loads on buildings (see EN 1991-1-3)*				
Finland, Iceland, Norway, Sweden	0,70	0,50	0,20	
Remainder of CEN Member States, for sites	0,70	0,50	0,20	
located at altitude H > 1000 m a.s.l.				
Remainder of CEN Member States, for sites	0,50	0,20	0	
located at altitude H ≤ 1000 m a.s.l.				
Wind loads on buildings (see EN 1991-1-4)	0,6	0,2	0	
Temperature (non-fire) in buildings (see EN	0,6	0,5	0	
1991-1-5)				
NOTE The ψ values may be set by the National annex.				
* For countries not mentioned below, see relevant local conditions.				

Table A1.1 - Recommended values of ψ factors for buildings

EN 1990:2002 & CR0-2012

Politebnica 14

Reinforced Concrete II. / Beton Armat II.

3. Stresses limitation / Limitarea eforturilor unitare

Tensile stress in reinforcement shall be limited in order to avoid inelastic strain, inacceptable crack width or deformations

 $\sigma_s \le 0.8 f_{yk}$ - for characteristic combinations of loads $(G + Q_{k,1} + \psi_{0,i}Q_{k,i})$

$\sigma_s \leq f_{yk}$ - stresses caused by imposed deformations

THANK YOU FOR YOUR ATTENTION!

Dr. NAGY-GYÖRGY Tamás

Professor

E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

Web:

http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office: A219

